Ramsey theory
   HOME

TheInfoList



OR:

Ramsey theory, named after the British mathematician and philosopher
Frank P. Ramsey Frank Plumpton Ramsey (; 22 February 1903 – 19 January 1930) was a British people, British philosopher, mathematician, and economist who made major contributions to all three fields before his death at the age of 26. He was a close friend of ...
, is a branch of the mathematical field of
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?"


Examples

A typical result in Ramsey theory starts with some mathematical structure that is then cut into pieces. How big must the original structure be in order to ensure that at least one of the pieces has a given interesting property? This idea can be defined as partition regularity. For example, consider a
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices i ...
of order ''n''; that is, there are ''n'' vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now colour each edge either red or blue. How large must ''n'' be in order to ensure that there is either a blue triangle or a red triangle? It turns out that the answer is 6. See the article on
Ramsey's theorem In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (sa ...
for a rigorous
proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a co ...
. Another way to express this result is as follows: at any party with at least six people, there are three people who are all either mutual acquaintances (each one knows the other two) or mutual strangers (none of them knows either of the other two). See theorem on friends and strangers. This also is a special case of Ramsey's theorem, which says that for any given integer ''c'', any given integers ''n''1,...,''n''''c'', there is a number, ''R''(''n''1,...,''n''''c''), such that if the edges of a complete graph of order ''R''(''n''1,...,''n''''c'') are coloured with ''c'' different colours, then for some ''i'' between 1 and ''c'', it must contain a complete subgraph of order ''ni'' whose edges are all colour ''i''. The special case above has ''c'' = 2 and ''n''1 = ''n''2 = 3.


Results

Two key theorems of Ramsey theory are: * Van der Waerden's theorem: For any given ''c'' and ''n'', there is a number ''V'', such that if ''V'' consecutive numbers are coloured with ''c'' different colours, then it must contain an
arithmetic progression An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
of length ''n'' whose elements are all the same colour. * Hales–Jewett theorem: For any given ''n'' and ''c'', there is a number ''H'' such that if the cells of an ''H''-dimensional ''n''×''n''×''n''×...×''n'' cube are coloured with ''c'' colours, there must be one row, column, etc. of length ''n'' all of whose cells are the same colour. That is: a multi-player ''n''-in-a-row
tic-tac-toe Tic-tac-toe (American English), noughts and crosses (English in the Commonwealth of Nations, Commonwealth English), or Xs and Os (Canadian English, Canadian or Hiberno-English, Irish English) is a paper-and-pencil game for two players who ta ...
cannot end in a draw, no matter how large ''n'' is, and no matter how many people are playing, if you play on a board with sufficiently many dimensions. The Hales–Jewett theorem implies Van der Waerden's theorem. A theorem similar to van der Waerden's theorem is '' Schur's theorem'': for any given ''c'' there is a number ''N'' such that if the numbers 1, 2, ..., ''N'' are coloured with ''c'' different colours, then there must be a pair of integers ''x'', ''y'' such that ''x'', ''y'', and ''x''+''y'' are all the same colour. Many generalizations of this theorem exist, including Rado's theorem, Rado–Folkman–Sanders theorem, Hindman's theorem, and the Milliken–Taylor theorem. A classic reference for these and many other results in Ramsey theory is Graham, Rothschild, Spencer and Solymosi, updated and expanded in 2015 to its first new edition in 25 years. Results in Ramsey theory typically have two primary characteristics. Firstly, they are unconstructive: they may show that some structure exists, but they give no process for finding this structure (other than
brute-force search In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of Iteration#Computing, systematically checking all possible candida ...
). For instance, the
pigeonhole principle In mathematics, the pigeonhole principle states that if items are put into containers, with , then at least one container must contain more than one item. For example, of three gloves, at least two must be right-handed or at least two must be l ...
is of this form. Secondly, while Ramsey theory results do say that sufficiently large objects must necessarily contain a given structure, often the proof of these results requires these objects to be enormously large – bounds that grow exponentially, or even as fast as the
Ackermann function In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total function, total computable function that is not Primitive recursive function, primitive recursive. ...
are not uncommon. In some small niche cases, upper and lower bounds are improved, but not in general. In many cases these bounds are artifacts of the proof, and it is not known whether they can be substantially improved. In other cases it is known that any bound must be extraordinarily large, sometimes even greater than any primitive recursive function; see the Paris–Harrington theorem for an example.
Graham's number Graham's number is an Large numbers, immense number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number, bot ...
, one of the largest numbers ever used in serious mathematical proof, is an upper bound for a problem related to Ramsey theory. Another large example is the Boolean Pythagorean triples problem. Theorems in Ramsey theory are generally one of the following two types. Many such theorems, which are modeled after Ramsey's theorem itself, assert that in every partition of a large structured object, one of the classes necessarily contains its own structured object, but gives no information about which class this is. In other cases, the reason behind a ''Ramsey-type'' result is that the largest partition class always contains the desired substructure. The results of this latter kind are called either ''density results'' or ''Turán-type result'', after
Turán's theorem In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a clique (graph theory), complete subgraph of a given size. It is one of the central results of extremal graph theory, an a ...
. Notable examples include
Szemerédi's theorem In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers ''A'' with positive natural density contains a ''k''- ...
, which is such a strengthening of van der Waerden's theorem, and the density version of the Hales-Jewett theorem..


See also

*
Ergodic Ramsey theory Ergodic Ramsey theory is a branch of mathematics where problems motivated by additive combinatorics are proven using ergodic theory. History Ergodic Ramsey theory arose shortly after Endre Szemerédi's proof that a set of positive upper density ...
*
Extremal graph theory Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence loca ...
*
Goodstein's theorem In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every Goodstein sequence (as defined below) eventually terminates at 0. Laurence Kirby and Jeff Paris showed ...
*
Bartel Leendert van der Waerden Bartel Leendert van der Waerden (; 2 February 1903 – 12 January 1996) was a Dutch mathematician and historian of mathematics. Biography Education and early career Van der Waerden learned advanced mathematics at the University of Amste ...
* Discrepancy theory


References


Further reading

*. * (behind a paywall). *. *. * Matthew Katz and Jan Reimann
An Introduction to Ramsey Theory: Fast Functions, Infinity, and Metamathematics
' Student Mathematical Library Volume: 87; 2018; 207 pp; {{ISBN, 978-1-4704-4290-3